
AD-A248 783

NASA Contractor Report 189612

ICASE Report No. 92-7

DTIC
ELECTEicAsR 2 S w992U

ICASE .S

AN ALTERNATIVE TO UNSTRUCTURED GRIDS FOR
COMPUTING GAS DYNAMIC FLOWS AROUND
ARBITRARILY COMPLEX TWO-DIMENSIONAL BODIES

James J. Quirk

Thisd-> :ment tis been approved
for public release and sale; its
distibution is unlimited.

Contract No. NAS1-18605
February 1992

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

INASA 92 4 o 151
National Aeronautics and
Space Administration

Langley Research Center 92-10147
Hampton, Virginia 23665-5225 1Ii11111111 I 11 111 11! 1111' 111111

An Alternative to Unstructured Grids

for Computing Gas Dynamic Flows Around

Arbitrarily Complex Two-Dimensional Bodies

James J Quirk 1

Institute for Computer Appiications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23665, USA.

ABSTRACT

Within the shock-capturing community, the need to simulate flows around geomet-

rically complex bodies has resulted in an inexorable shift away from schemes which

employ body-fitted grids to schemes which employ unstructured grids. Although un-

structured grids are undeniably effective, in view of the increasing reliance placed on

computational results, such a wholesale shift in mentality should give cause for con-

cern. The concept of using several computer codes to cross check numerical results

becomes ill-founded if all codes follow the same methodology. In this paper we de-

scribe an alternative approach for dealing with arbitrarily complex, two-dimensional

geometries, the so-called cartesian boundary method.

Conceptually, the cartesian boundary method is quite simple. Solid bodies blank

out areas of a background, cartesian mesh, and the resultant cut cells are singled out

for special attention. However, there are several obstacles that must be overcome in

order to achieve a practical scheme. We present a general strategy that overcomes

these obstacles, together with some details of our successful conversion of an adaptive

mesh algorithm from a body-fitted code to a cartesian boundary code.

'This research was supported by the National Aeronautics and Space Administration under
NASA Contract No. NASI-18605 while the author was in residence at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA Codes
23665. i1 orSDist ,,ca

-1-

1 Introduction

Given calculations such as L6hner's[13] simulation of a blast wave impinging on a tank,

there can be no doubt within the shock capturing community that unstructured grids

provide a highly effective means of simulating flows around geometrically complex

bodies. Indeed, such is the success of unstructured grids, there is a danger that they
will become de rigueur. This would be a cause for some concern given the increasing

reliance placed on computational results. If nothing else, the concept of using several

codes to cross check numerical results becomes ill-founded if all codes follow the same

methodology. Besides, the superiority of unstructured grids is not clear-cut. For
example, there is numerical evidence to suggest that for very strong shocks, schemes

which employ unstructured grids suffer from larger phase errors than do schemes

which employ structured grids[18].

In this paper we describe an alternative approach for dealing with complex, two-

dimensional geometries, the so-called cartesian boundary method. Conceptually, this
method is quite simple. Solid boundaries blank out areas of a background cartesian

mesh, and the resultant cut cells receive special attention during the integration of

the flow solution. However, this simplicity of concept belies the obstacles that must

be overcome in order to achieve a practical scheme. Whilst these obstacles are far

from insurmountable they are often perceived as stumbling blocks, hence the dearth

of schemes which employ the cartesian boundary method.

Now it is not our intention to rubbish unstructured grid methods. This would be
foolish, for it is the specific problem in hand that ultimately determines which solution

strategy is best. Instead, we wish to demonstrate th,-t contrary to popular opinion, a

structured grid scheme can match the geometric flexibility exhibited by unstructured

schemes. Accordingly, we do not extol the advantages of structured grids over their

unstructured counterparts. Nor do we survey the few cartesian boundary schemes that

appear in the literature, for most of these schemes have only been shown to work for

stylized geometries. Suffice it to say, the majority of schemes have been developed for

steady state, transonic flow calculations, examples being[5, 6, 14]. To the best of our

knowledge, only Berger and LeVeque[3], and Chiang et al[7] have tackled unsteady

flows which involve strong shock waves. Where appropriate, differences between these
two schemes and our method are discussed in the next section and so need not be

considered here.

It has been our experience that the major obstacle to developing a cartesian

boundary scheme lies in formulating a general strategy that can cope with truly com-

-2-

plex geometries. Consequently, in this paper we have concentrated on describing the

practical formulation of our method rather than on presenting its theoretical justifica-

tion. To this end, in section 2 we present an overview of the scheme highlighting some

of the problems that needed to be overcome. This is followed by detailed descriptions

for each major constituent of the scheme. In order to produce an algorithm that is

competitive compared with unstructured grid methods, it is necessary to combine the

cartesian boundary scheme with some form of local mesh refinement. In section 4 we

give details of one suitable mesh refinement scheme, the Adaptive Mesh Refinement

(AMR) algorithm. Then, so as to demonstrate the effectiveness of our algorithm for

simulating shock hydrodynamic flows around complex geometries, a section of results

is presented. Finally, in section 6 we give the main conclusions that we have drawn

from this work.

2 Overview

In essence, our cartesian boundary scheme follows a finite-volume approach. Thus

it makes no difference to the mechanics of the scheme as to which equations are

integrated, they simply need to be given in conservation form. However, we do assume

that the computational grid contains a cell-centred projection of the flow solution,

for solid wall boundary conditions are applied via a local reflection at the wall. As

French[9] has demonstrated, it is possible to develop a cartesian boundary method for

cell-vertex schemes but, because of the number of different situations that can arise,

this necessarily results in an algorithm which is more unwieldy than its cell-centred

counterpart.

Compared to other types of grid, cartesian boundary grids appear straightforward.

Solid bodies merely blank out areas of a background, cartesian mesh. This gives rise

to three classes of mesh cell. Namely, cut cells which lie along the surface of a body,

solid cells which lie wholly within a body, and uncut cells which lie outside a body.

But a cut cell may be further categorized as one of several types depending on the

number and relative positions of the intersections of the body with the cell. So given

an arbitrary set of bodies, the process of determining the exact nature of each cell in

the mesh is not trivial. Moreover, since our simulations employ an adaptive grid this

cell-type information cannot be gathered as a one-off at the start of each calculation;

it must be gathered each time the grid is adapted. Therefore considering that a

typical calculation involves several hundred grid adaptions, it is imperative that the

gathering process be efficient.

-3-

Our gathering process starts by tracing the outline of each body so as to find all the

intersections between the grid and the specified input geometry. These intersections
are then collated to find the types and locations of all the cut cells. Given this

information, it is then a simple matter to scan the mesh, thereby determining which

cells are solid, and which cells are uncut. Since only cut cells are examined in detail

this method proves fairly efficient, but a few insidious problems must be overcome

in order that the method be made foolproof. For example, suppose that the input

geometry consists of a closed body formed from several straight line segments. A

nal've algorithm which employed floating point arithmetic to calculate the intersection

points could well fail if one of the line junctions lay on a grid line. Because there is no

control over rounding errors, the end of one line segment could effectively lie on one

side of a grid interface, with the start of the next line segment lying on the other side.

Thus an intersection would not be registered. Although infrequent, such problems

thwarted our early attempts at coding a general purpose algorithm for gathering the

cut cell information. Our latest method avoids such problems by finding intersections

relative to a lattice of finite resolution.

Once the cell-type information has been gathered, a finite-volume scheme may be

used to integrate the discretized flow solution. We use the two step method proposed
by Hancock[11J. First, a form of MUSCL interpolation(171 is used to reconstruct the

flow solution within each mesh cell. An intermediate solution is then found by ad-
vancing this reconstructed solution by half a time step. This intermediate solution

defines a set of left- and right-hand states for a series of Riemann problems. The
solutions to these Riemann problems provide a set of upwinded interface fluxes which

are used to integrate the original flow solution forward by one full time step. Since
we are using a cell-centred projection the calculation of flux integrals for cut cells

presents no special difficulties. As is common practice, the flux for an interface which

forms part of a solid surface is found by computing a reflected Riemann problem.

However, as it stands, our code reduces to first-order along a solid boundary because

the reconstruction of the flow solution within a cut cell is zeroth-order. So far this

has not proved to be a limitation, for accuracy can always be improved via the use

of local mesh refinement. But, if needs be, matters could be improved by adopting

the cut cell reconstruction technique proposed by De Zeeuw and Powell[6].

Since cartesian boundary grids result in some very small cut cells, there is one
important step that must be added to the above procedure in order to ensure the

stability of the scheme. In essence, stability problems are circumvented by absorbing

-4-

small cells into large cells. As will be described in section 3.5, a set of lists is produced

which link small cells to large, neighbouring cells. In this context, if the area of a cell

is less than half that of an uncut cell then it is deemed to be small, otherwise it is

deemed to be large. Note that a single list may contain more than two cells, but no cell

appears in more than one list. Once a residual for each mesh cell has been calculated

via a surface flux integral, the residuals for the cells contained by a given list are

replaced by their volume weighted average. This new residual is equivalent to that

which would have been found if a separate flux integral had been performed for the

single cell formed from the union of all the cells in the list. Therefore this procedure

is just a convenient way by which to compute the residual for some odd shaped cell.

It should not be construed as a smoothing process. Finally, these modified residuals

are used to update the flow solution to the next time level. Thus, provided the CFL

condition is satisfied for cells as small as half an uncut cell, the integration process

is stable. A similar cell absorption technique was used by Clarke et al[5] to stabilise

their steady-state, transonic airfoil calculations. However, as described, it is doubtful

if their method would work for bodies which contain re-entrant corners.

2.1 Comment

In all probability, the unpopularity of cartesian boundary schemes is due to the per-

ceived difficulties associated with overcoming the stability problems brought about

by disparate cell sizes, but to a large extent any fears are unfounded. Indeed, given a

finite-volume mentality, our strategy follows almost trivially. Moreover, De Zeeuw and

Powell[6] have shown that for steady-state calculations a local time stepping strat-

egy is sufficient to ensure stability, but such strategies are already commonplace as a

means to accelerate the convergence rate. On the other hand, Berger and Le Veque[3]

adopted a much more ambitious strategy for ensuring the stability of their cartesian

boundary scheme. In essence, they employ a large time step generalisation of Go-

dunov's method. That is, following the solution to a set of Riemann problems, the

flow solution is evolved by tracking individual waves across the mesh. As a wave

crosses a cell, either partially or wholly, so the flow variables are adjusted accord-

ingly. Thus, although the method is explicit, in principle, it does not suffer a stability

restriction on the size of the time step that may be used to evolve the flow solution.

Their motivation for using this approach is to avoid the loss in resolution associated

with absorbing small cells into larger cells. However, given the complexity of their

method, we feel that the ends do not justify the means.

-5-

Firstly, if a cell is genuinely small, it matters not one jot if it is absorbed into

a neighbouring cell. Secondly, the small loss in resolution associated with absorbing
cells which are close to half the size of an uncut cell can be more than made up
via local mesh refinement. Besides, their large time step method is not foolproof;
witness the fact that for very small cells they report the need to use some form of cell
absorption procedure. It is not hard to envisage why the large time step method is

occasionally found wanting. For example, no account is taken of the wave interactions

that might occur during the course of a single time step. Now given that waves reflect
from solid surfaces, interactions are bound to occur in the neighbourhood of uncut

cells. For strong waves any interactions will be highly nonlinear. Hence, failure to
allow for the interactions will lead to erratic results. Even when only weak waves

are involved, in which case it is relatively safe to ignore any interactions, problems
arise in the vicinity of re-entrant corners. For it becomes difficult, logistically, to keep

track of the area swept out by a single wave, given that it may well rebound several

times between the surfaces that form the corner.

3 Algorithm Details

As mentioned previously, the major obstacle to developing a cartesian boundary

scheme lies with formulating a general algorithm that can handle truly complex ge-

ometries. Now, a general algorithm necessarily contains many mundane components,
so it would be inappropriate for us to describe our scheme in complete detail. Instead,

we simply detail its main elements.

3.1 Input Geometry

If a cartesian boundary scheme is to be genuinely useful, it must be able to cope

with a wide range of input geometry without any user intervention whatsoever. In

our scheme the geometry is specified via an arbitrary number of cubic-B6zier curves
which provide the outlines for one or more solid bodies. Only two minor restrictions

apply: first, no two bodies can overlap one another; second, each outline must form

a simple closed curve. But since it makes no sense to transgress these restrictions,

to all intents and purposes, the scheme can cope with arbitrary shaped bodies. For
example, the letter M could be input using the 29 Bdzier curves shown in figure 1.
Note that each Bezier curve consists of 4 rcontrol points. Two control points fix

the endpoints of the curve, and two control points fix the slope of the curve at

-6-

i.. .. I . .

IL

fi

(a)

I- ' -1 11 1 -

W I

"I A\ I

, ~ ~ 0 P1 Q

(b)

Figure 1: Example of input geometry. (a) Required shape. (b) Input B~zier curves.

(c) Formulation of a cubic-B~zier curve.

-7-

(c)

C

ItI

For the control points {A, B, C, D} the resultant cubic-B6zier curve may be written

in the form,

X(t) = BoXA + BiXB + B 2XC + B3 XD,

Y(t) = BoYA + BiYB + B2Yc + B3YD.

Where,

BO (1-t)3 ,

B, U 3 (1-t)',

B2 =3t' (1 -t),
B3 t3

and t is limited to values between 0 and 1.

Figure 1: For caption, see facing page.

-8-

these endpoints. These two types of control point are marked by solid circles and

open circles respectively. The choice to use B6zier curves over some other form of

parametric representation was made solely on our knowledge of computer graphics. In

which field this type of curve is widely used as a cheap, yet flexible means of specifying

geometrical information. Indeed, many useful algorithms pertaining to B6zier curves

are available from standard texts on computer graphics[8, 101. However, since all

curves are effectively reduced to a series of straight line segments it would be a simple

matter to change to some other parametric representation.

3.2 Locating Grid Intersections

Given some input geometry, the next step is to find all the intersection points between

the cartesian mesh and the outlines of the solid surfaces. As was described in section 2,

this task is not as innocuous as it appears. If the cartesian boundary scheme is to

be robust, it is essential that control be exercised over floating point round-off errors.

In essence, we eliminate round-off errors by finding the intersection points relative to

some lattice of finite resolution. Thus we can guarantee that every cut cell has at

least two intersection points. The importance of this fact will become clear later on.

Briefly, the location process works as follows. The outline of each body is traced

in an anti-clockwise direction, Bezier curve by Bbzier curve, individual curves being

stroked as a series of straight line segments. Now algorithms exist which minimize

the number of line segments required to draw a B6zier curve to some prescribed

accuracy[8, 10]. Therefore it does not take an inordinate number of segments to get

a good representation of the outline. As a straight line is stroked, so the intersection

points, if any, between the grid and the line are found and saved in a list. Thus a

complete list is generated of the intersection points between the mesh and the input

outlines. The only step of the location process which merits a detailed description is

that which strokes a single straight line segment.

Just prior to being stroked, a line segment is clipped against the mesh. So, the

algorithm for determining the grid intersection points need only work for the case

where the line lies wholly within the mesh. Therefore it can assume that the endpoints

of a line are available in the following form. An (I, J) co-ordinate pair identifies a

specific mesh cell, and an (ij) offset pair identifies a specific location within that

cell. So as to do away with the need for floating point operations within the stroking

algorithm, each cell is effectively split into a matrix of N by N pixels. An (i,j) offset

simply identifies one of these discrete elements. Therefore, 0 < i j < (N - 1). Note

-9-

that to ensure accuracy, N should be large; in our code, N is set to 220. For brevity
we denote the discrete location of an endpoint by <I, J: i,j>. Although rounding

errors inevitably occur when finding the discrete location for a point, (x, y), specified
in world co-ordinates, they do so in a controlled manner. Therefore given a series of
line segments: (xi, yi) -+ (x 2, y2), (x 2, Y2) _+ (x3 , y3), etc.; the discrete location for
the start of one line can be guaranteed to match that for the end of the previous line

in the series.

The inner workings of the stroking algorithm are best explained by considering a
specific example. The grid intersection points for the line shown in figure 2 are found

using the algorithm given in figure 3. First, a simple check is applied to see whether
or not the two endpoints lie within the same mesh cell. If this is the case, the line

cannot intersect the grid so no further processing need be done. Otherwise, one or
more intersections need to be found. The algorithm starts at the left-hand end of the
line and proceeds to the right by way of a series of jumps: a, b, c,. . ., h. With each
jump a new intersection, jl, is found between the line and a vertical grid line. This
intersection is just an offset like that used to specify the endpoints of the line. Note

that if the size of this intersection offset is larger than (N - 1), the line must just
have crossed a horizontal grid line2 . In which case: the horizontal intersection offset,

i, is found by interpolation; jfn is reduced by N to give the correct vertical offset, j;
the J co-ordinate is incremented by one so as to move up a row. As an intersection
is encountered, so it is saved in a list and the two adjoining mesh cells are marked
as being cut. Note the black dots shown in figure 2 correspond to the location (I, J)

just before each jump is taken.

Although the basic concept behind the stroking algorithm is straightforward, sev-
eral subtleties exist. The two most important ones are as follows. First, when cal-

culating the increment added to j, given an ihcrement to i, it is necessary to keep
track of fractions of a pixel. Whenever the running total for these fractions accrue

one unit, the increment to j is increased accordingly. Therefore, with reference to
figure 3, given a cumulative change in i of A I, the sum of the increments to j add
up to A J, exactly'. Thus the stroking algorithm cannot fall short of the end of a

line, thereby missing an interscction point. Nor can it march past the end of a line,

thereby generating a spuriuus intersection point. Second, care should bc taken to
ensure that the evaluations of Nj and N do not cause an arithmetic overflow. Note

2Effectively, an intersection is registered whenever an offset clicks over from (N - 1) to N.
3A I and AJ correspond to the width and height of the line, respectively, in terms of pixels.

10 -

that normal 32 bit integer arithmetic is inadequate for our purposes; the largest in-

termediate value that could possibly occur during the evaluation of Nj is N 2(1 2 - I1),

with N set to 221 this value is bound to exceed 232. Fortunately, a simple ruse may be

executed using double precision variables. Although we are only interested in integer
arithmetic, if N, Nj, AJ and AI are declared to be double precision, we can take

advantage of the 52 bit mantissa offered by such variables which adhere to the IEEE

standard. Therefore, with N set to 220, the integers Nj and N will be evaluated

exactly for values of (12 - I,) as large as 4096.

Finally, while the algorithm given in figure 3 only works for lines whose slope lie

between 0' and 450, analogous algorithms can be formulated for each of the seven

remaining octants. Therefore it is relatively straightforward to formulate a combined

algorithm which can cope with lines of arbitrary slope.

i2

J, b c d

o0

J (I,, JI)

i, a

Figure 2: Example of the line stroking procedure.

3.3 Cut Cell Information

Once all the grid intersection points have been located, a simple collating procedure is

used to determine the cut cell information. Now we allow just three basic types of cut

cell, which together with four different orientations gives rise to the 12 types of cut cell

shown in figure 4. Note that each of these cut cells has only two intersection points.

- 11 -

Procedure StrokeLine(< I,, J1 : ii, j >,< I2, J2 : i2 , i2 >)

if (II : 12 U J 1 7 J2) { % Does the line lie within a single mesh cell?

< I,J: i,j > = < I1,J 1 :i1 ,ji > % No, so get start of line and continue.

AI = (12 - I,) *N + (i 2 - il) % Find width of line's bounding box.

AJ = (J 2 - J1) *N + (j2 - j) % Find height of line's bounding box.

1 = jo = 0 % Reset remainder running totals.

while(true) {
Nj = ((N - i) * AJ)/AI % Find increment to j given a step of (N-i).

N = N - i) * AJ- Nj * AI % Calculate remainder of j increment.

jfn = j + Nj % Find new intersection point.

= j'+ N; % Compute Running total for remainders.

if (j' > AI) { % Has the running total reached one unit?

j = jn + 1 % Yes, so bump intersection point by one.

= - AI % And adjust running total accordingly.
I
if (jn > N) { % Has a horizontal intersection occurred?

Z = i + ((N - j) * AI - j 0)/AJ % Yes, so find the intersection point.

if (I =/2 n i > i 2) break % Exit if end of line is exceeded.

Ptr = Save-Intersection(i) % Save intersection and mark cut cells.
SaveNorthern-Edge(Ptr, I, J)
Save_-Southern_-Edge(Ptr, I, J + 1)
jn= jn-N % Adjust jn to range [0,N-1].

J = J +1 % Move up a cell.

j=jn % Replace the old intersection.
j j, % Save for next horizontal interpolation.

if (I > 12) break % Exit if end of line is exceeded.

Ptr = Save-Intersection(j) % Save vertical intersection.

Save_-Eastern_-Edge(Ptr, I, J) % And mark cut cells.
SaveWesternEdge(Ptr, I + 1, J)

I = I + 1 % Move to next vertical grid line.

} % Repeat.

End Procedure

Figure 3: Procedure to stroke a straight line; limited to qlupes between 0' and 45' .

- 12 -

But, there is no upper limit to the number of intersections that might conceivably be

found for any one mesh cell. So, the type of each cell is determined from its first and

last intersection points. Remember the intersection points were found by tracing out

the boundary, and so the intersection points for any one cell are listed in strict order.

Therefore it is not unreasonab!! to approximate the solid boundary by a line joining

the first and last intersection points. Under normal circumstances, a cell having more

than two intersection points merely indicates that the mesh is too coarse to resolve

the geometry properly.

- Uncut Cell Solid Cell

A B C D E F

a b c d e r

Figure 4: Different types of cell.

Given these two intersections, it is a trivial matter to determine the type of the

cut cell. For example, suppose the first intersection lies along the western edge, and

the second intersection lies along the northern edge. In which case, the cell must be

of type a. Note since outlines zre traced in an anti-clockwise direction the cell cannot

be of type A. It should now be JAc:" why it is important to ensure that at least two

intersections arc found for each cut cell. For if rounding errors resulted in there being

only one intersection point it would be impossible to determine the type of the cell.

Figure 5 shows the grid intersection points for the letter M, and the corresponding

cut cells produced by the intersection collation procedure. Note that sharp corners are

inevitably blunted. While such blunting could largely be avoided by the introduction

of further cell-types this would necessarily lead to a more complicated scheme. We

simply circumvent the problem of blunting by using local mesh refinement; the finer

the mesh, the smaller the degree of blunting. Aiso. note that the collation procedure

has flagged some cells as being degenerate, such cells are marked as dark squares.

Basically, a cell is flagged as being degenerate whenever it is too coarse to provide an

unambiguous, local representation of an outline. Degenerate cells must be refined.

- 13 -

Y , I I I

I X: I A

IL

(a)

I A -

(b)

Figure 5: (a) Grid Intersection points for the letter M. (b) Cut cells resulting from

the intersection collation procedure.

- 14-

3.4 Finding Solid Cells

Once all the cut cells have been located it is a simple matter to scan the mesh thereby
finding all the solid cells. This scanning procedure involves four sweeps. First, each

horizontal strip of cells is scanned from left to right. During which, if a cell is found
to be uncut then it is flagged as being solid depending on whether a switch is on or

off. At the start of each row this switch is set to off, that is uncut cells are not to be
flagged as solid. Scanning one of the cell-types {A, e, f} turns the switch on, while

scanning one of the types {a, E, F} turns it off. This simple procedure would suffice
if only convex bodies were allowed. But, to provide a foolproof method of locating

all the solid cells contained by an arbitrary body it is necessary to perform a further
three sweeps which scan the mesh from right to left, top to bottom, and bottom to
top. Note that each sweep uses a different set of cells to toggle the flagging switch.

3.5 Combination Cells

After all the cut cells have been located, the following procedure determines which
cells should be grouped together so as to ensure the stability of the flow integration

process. In essence it produces a set of lists, each list identifies the members for one
distinct group of cells.

The following procedure is applied to each cut cell in turn. First, the cell is

checked to see if it is small. If the cell is larger than half that of an uncut cell it
does not need to be linked to another cell, so no further processing need be done.

Otherwise, an offset is found which points to a prospective combination cell. This
combination cell lies adjacent to the cut cell, and is the cell that would be entered
when leaving the cut cell along a normal that starts from the midpoint of the edge

that marks the solid boundary. Note no trigonometry is required to find this offset.
For example, for a type-A cell the offset can only be (0, 1) or (-1,0). The choice of
offset is readily determined from the relative positions of the two intersections which
fix the cell. Further processing depends on whether the cut cell or the prospective
combination cell already belong to a list or not. If neither cell is in a list, they are

both added to a new list. If just the combination cell is part of a list, the cut cell is

added to the existing list. Similarly, if the cut cell is part of a list, the combination
cell is added to the existing list. Now if both cells are already in a list, one of two
situations is possible. First, both cells are already part of the same list, in which case
nothing need be done. Second, the cells belong to different lists, in which case one
list is destroyed it's contents being first added to the other list. This ensures that a

- 15 -

cell does not belong to more than one list.

One complication must be added to the above procedure in order that concave

corners are handled properly. For example, consider a type-A cell and suppose that
the offset of the prospective combination cell was found to be (-1, 0). If this combi-
nation cell is of type D, the two cells form a sharp concave corner. So the offset is

taken to be (0, 1). Similarly, if the offset was found to be (0, 1) and the combination

cell was of type e, the offset is replaced by (-1,0). The choice of combination cells

for the cut cells {D, b, e} is handled analogously. Figure 6 shows the grouping of the

combination cells in the vicinity of the central concave corner for the body shown in
figure 1. Note, so as to distinguish between groups which adjoin one another, each

combination group is coloured using one of three shades. No significance should be

attached to the choice of shade for a specific combination group.

Figure 6: Combination groups produced in the vicinity of a sharp concave corner.

- 16 -

3.6 Comment

It should now be apparent that the mentality required to develop a cartesian boundary

scheme is somewhat different to that normally used for computational fluid dynamics,

hence the level of detail in this paper. Indeed, parts of our method parallel certain

basic algorithms from the field of computer graphics. For example, the procedure

given in figure 3 is similar in spirit to Bresenham's classic line drawing algorithm.

Given these parallels, it seems likely that our method could be improved upon via the

adaptation of more sophisticated graphics algorithms. Nevertheless, as it stands the

method is efficient, for only cut cells are ever examined in detail. Thus, the combined

workload for the procedures described in this section grows roughly with the square

root of the number of cells contained by the cartesian mesh, as against the effort

required to integrate the flow solution which grows directly with the number of mesh

cells. Moreover, for the calculations presented in section 5, in terms of the overall

workload, less than 3% of the computational effort was expended on these procedures,

the rest being expended on the AMR algorithm. Therefore, any improvements that

could be made would prove largely inconsequential.

4 The AMR Algorithm

The AMR algorithm is a general purpose mesh refinement scheme for producing very

high resolution simulations of shock hydrodynamic phenomena. A full description of

the algorithm is given by Quirk[15], and so here we shall merely attempt to impart

its main features. Before proceeding it should be acknowledged that the foundations

of the scheme lie with the work of Berger[1, 2].

The AMR algorithm employs a hierarchical system of grids. At the bottom of the

hierarchy there is a coarse grid that delineates the computational domain. Additional

tiers are added in order to refine this domain locally. The exact nature of the grid

system may be visualized in the following manner. Imagine several sheets of squared

graph paper with spacings 1,p,p.q,p.q.r,... where p,q,r etc. are arbitrary integers,

and suppose that these sheets are carefully stacked in ascending order of resolution

such that the printed lines on successive sheets line up with one another. Now consider

the following two rules for drawing rectangles on these sheets of paper. One, all lines

must be drawn along the existing printed lines. Two, a rectangle drawn on one

sheet of paper must be contained within one or more rectangles drawn on the sheet

immediately below it. Note that this second rule does not apply to rectangles drawn

- 17 -

on the bottommost sheet. Given these two rules, an arbitrary computational grid

would consist of all the squares contained by an arbitrary set of rectangles drawn on

these stacked sheets. In practice the rectangular mesh patches may be distorted so
as to form a body-fitted grid4 .

This hierarchical grid system provides a flexible means of discretizing a flow so-
lution; each mesh cell contains a cell-centred projection of the flow solution. Addi-
tionally, the grid structure may be made to automatically adapt to an evolving flow.

Thus it is possible to achieve the resolution associated with very fine meshes without
incurring the expense of having to employ a fine mesh throughout the flow domain.

The AMR algorithm refines in time as well as space. More, but smaller time steps
are taken on fine grids than on coarse grids. The hierarchical nature of the grid
system allows the different sized time steps to be interleaved such that the simulation
remains time accurate. Therefore, in contrast to other mesh refinement schemes,

the presence of a few extremely fine mesh cells in one part of the flow domain does
not have an adverse affect on the rate at which the rest of the flow solution may be

advanced. This temporal refinement strategy should not be confused with the local
time stepping strategy that is often used to accelerate convergence during steady-

state calculations. Here we are concerned with computing time accurate solutions to

unsteady flow problems.

An important feature of the AMR algorithm is that it places no special constraints

on the basic numerical method used to integrate the discretized flow solution. For
the algorithm contains machinery which allows each mesh patch to be integrated

independently of every other mesh patch. So, in principle, any cell-centred solver
developed for a single quasi-rectangular mesh could form the basis of the flow inte-

gration process. To date we have incorporated three different schemes to integrate the

Euler and the Navier-Stokes equations, and one scheme for detonation flows. For the
calculations presented in section 5, we used Toro's[16] hybridized Riemann solver to
integrate the Euler equations. However, for the purposes of this paper the innermost
workings of the integration process are unimportant.

4.1 Modifications

The following minor modifications had to be made to the AMR algorithm in order

that it could take advantage of the cartesian boundary scheme. Firstly, every time

the computational grid is adapted, so miscellaneous cell-type information must be

4Given that we now favour a cartesian boundary approach, this option is redundant.

- 18 -

gathered on those levels for which the grid has changed. Since a grid level merely

consists of one or more rectangular mesh patches, the procedure which co-ordinates

the gathering process is quite straightforward. The method described in section 3 is

simply applied to each mesh patch in turn. However, it is worth noting one small

detail that greatly improves the efficiency with which the cell-type information may

be gathered, especially when several hundred patches need to be processed. The four

control points used to define a cubic-B~zier curve form a convex hull, that is, the

B~zier curve lies wholly within the quadrilateral formed from joining up the control

points. Therefore, when processing a specific mesh patch, there is no need to trace a

B~zier curve if its convex hull fails to overlap the mesh, for no intersection points will

be found. Consequently, for the sake of a simple check just prior to tracing a curve,

much wasted effort can be avoided.

Given the cell-type information, the procedure used to integrate a single mesh

patch is but a slightly modified version of that used in the original body-fitted code.

Note that the integration process may be split up by function into three parts: first, a

set of unit area, interface fluxes is computed using some favoured numerical scheme;

second, a series of surface flux integrals are computed so as to produce a set of

residuals; third, the flow solution is updated by adding the residuals to the current

solution. Dealing with the first part, the procedure used to compute a unit area,

interface flux now monitors the cell types on either side of the interface. One of

three situations is possible: both cells are solid, in which case no flux exists, so no

processing is required; just one of the cells is solid, so a fictitious state is produced via

a local reflection before proceeding on with the original routine; the combination of

cell types is such to allow the straightforward use of the original routine. As was the

case with the body-fitted code, the procedure for calculating a flux is applied to each

interface of the mesh in turn. Following this however, it is now necessary to compute

an auxiliary set of fluxes. Running down the list of cut cells contained by the specific

mesh in hand, unit area fluxes are computed for those interfaces which form part of a

solid surface. Again, so as to be able to use the standard flux formulation, a fictitious

state is first produced via a local reflection before using the original flux routine.

Following the calculation of both sets of interface flux, it is a simple matter to

perform a surface flux integral for every non-solid cell contained by the mesh. The

procedure for an uncut cell is no different to that used by the body-fitted code except

for the streamlining that is possible now that cells are square rather than arbitrary

quadrilaterals. While the procedure to deal with cut cells is also straightforward,

- 19-

it is somewhat tedious to code, for each cell-type needs to be handled separately.

Note that the two intersection points which were used to determine the type for a

cell also fix the respective areas to be used for the different fluxes in the summation

of the surface flux integral. For the body-fitted code, the residuals arising from

the flux summations could be used directly to update the flow solution, but for the

cartesian boundary code they must be post-processed so as to ensure the stability of

the integration process. Running through the lists of combination cells, the residuals

for the cells in any one list are replaced by their volume weighted average. Again, it is

worth emphasizing that this step should not be construed as an averaging procedure,

as was described in section 2, it is just a convenient way in which to compute the

residual for some odd-shaped cell. After this post-processing, the residuals are used

in the usual manner to update the flow solution.

Finally, it should be noted that the comparative lack of detail given in this section

merely reflects the mundaneness of the modifications.

5 Numerical Results

To demonstrate the effectiveness of our scheme we now present results for three test

problems. Each calculation employed a three level adaptive grid. A coarse grid of 120

by 80 cells was used to delineate the computational domain, and a further two grid

levels were used to resolve flow details. The spatial refinement factor between each

grid level was 4, thus the resolution of the adaptive grid was nominally equivalent to

that of a uniform mesh of some 1920 by 1280 cells. The computations were performed

on a Silicon Graphics workstation.

Our first set of results come from the simulation of a planar shock wave reflect-

ing from a circular cylinder. The shock Mach number, M,, is equal to 2.81, and

the gas is assumed to be ideal with a ratio of specific heats, -y, equal to 1.4. This

problem has been used by many researchers to validate their shock capturing codes,

for the computational results at one particular time instant may be readily compared

against the Schlieren photograph presented by Bryson and Gross[41. Figure 7 shows

the density contours for our simulation at this time instant. Note we have taken

advantage of the fact that the flow field is symmetric and have computed the flow

about just one half of the cylinder. The similarity between these results and the

Schlieren photograph is quite striking. All the salient features of the flow field are

well resolved. The resolution of the contact discontinuity, vortex and vortex stem are

particularly impressive. Indeed, most published results for this test problem simply

- 20 -

fail to show these features. Lastly, we note that the present results are comparable,

if not superior, to those obtained using the original body-fitted version of our AMR

code[15].

For the second test problem we chose to simulate the reflection of a planar shock
wave over a double wedge, since this poses a sterner test than the ubiquitous single

wedge calculation. A comprehensive numerical study of the different types of basic

flow pattern that can evolve for this type of problem has been presented by Itoh et
al[12]. Here we reproduce one of their examples, namely the case for which Al5 , is

2.16 and the wedge angles are 200 and 55' . Figure 8 shows density contours for our
simulation at a stage in the evolution of the flow corresponding to that of the holo-

graphic interferogram shown on page 1164 of [12]. Unlike Itoh's simulation which is

woefully under resolved, our results faithfully reproduce the salient features of the

interferogram. However there is one anomaly. One of the contact discontinuities

within the simulation exhibits a fully blown Kelvin-Helmholtz instability, the corre-

sponding feature within the interferogram merely exhibits the early stages of such

an instability. There are two plausible explanations for this discrepancy. First, the

simulation did not include viscous effects and so would not be expected to accurately

reproduce the growth of a Kelvin-Helmholtz instability. Second, the mechanism by

which contact discontinuities are steepened was overly compressive. In other words,

too much anti-diffusion was added and this accelerated the growth of the instability.

Either way the cartesian boundary procedure is blameless and so we feel justified in

ignoring this anomaly here.

Finally, we present results for a somewhat frivolous test problem. Figure 9 shows

two snapshots from the interaction of a planar shock wave with the letters AMR.

Although frivolous, this test amply demonstrates that the scheme can indeed cope

with arbitrarily complex, two-dimensional shapes. And so it debunks the widely

held view that problems which involve awkward geometries are the exclusive preserve

of unstructured grid schemes. At this point it is worth emphasizing that the same

code was used for all three test problems presented in this section. It simply ran
with different sets of input data, each of which merely prescribed the outline of the

relevant solid surfaces and the strength of the incident shock wave.

- 21 -

6 Conclusions

A simple method has been developed whereby solid wall boundary conditions inay

be imposed on a cartesian mesh. This method has been combined with an adap-

tive mesh refinement scheme to give a powerful algorithm for simulating shock ly-

drodynamic flows around arbitrarily complex, two-d(imensional bodies. Results are

presented which clearly demonstrate that the new algorithm can match. not only lhe

accuracy of results produced using body-fitted grids, but also the geometric ftexibililv

exhibited by unstructured grid schemes. As such, the algorithm constitutes a coin-

petitive alternative to existing methods for simulating flows which involve awkward

geometries.

The performance of our algorithm results more from good management than from

sophisticated numerics. Indeed, our scheme could be viewed as being humdrum, for

no one component is extraordinary. However, this state of affairs is merely a reflection

of Occam's razor; entities are not to be nultiplied bcyond necessity.

As it stands, the algorithm forms a rounded piece of work. However, it could be

usefully extended in at least one direction. Namely, it should be possible to extend

the scheme so as to allow bodies to move relative to the mesh. This would open up

many new applications, such as modelling sabot and store release phenomena.

Finally, the resolution of the simulations presented in this paper is sufficient to

highlight the limitations of using the Euler equations to model shock hydrodynamic

flows. In particular, the modelling of contact discontinuities calls for the use of the

Navier-Stokes equations. Whilst the inclusion of viscous terms into the framework

of our cartesian boundary scheme is straightforward, given the lack of any notion

of a preferred direction, such a scheme would be limited to low Reynolds number

flows. Further work would be required to extend our methodology to high Reynolds

numbers.

Acknowledgements

I would like to thank my former supervisor, Prof. P.L.Roe, and my colleagues:

Dr. E.F.Toro, Mr. J.Pike and Dr. .J.A.Edwards, for t ie discussions which laid lie

foundations of this work.

- 22 -

Figure 7: Density contours, and corresponding computational grid, for one snapshot

from the interaction of a planar shock wave with a circular cylinder; cf. Schlieren

photograph presented by Bryson and Gross[41.

23 -

[[I [[[J i l l -] f i l l
-4+H+H-H f I I I I I I I I I I

+ +

-L 1 1 L

I., X

.......

__TTT I I I I I I

_T T T I I I I I III - - -
I I I I I I 1 11
I I T I I I I I

I I I I L-L

44+ + -H+I I I I I l l I J i l l

I J i l l

If [Jill

A+

k i l l I t
+[+I I t I l l I I

I l l] J i ll I i I ; I I I I I_
I+H+f+f- I I f I I1 [fi ll I t I I I I I t fi ll [I I I 1 1 1 1 1 #

I I T I I I I

4 1 1 1 1

I L - - -

LL I I I I I
1_1 I I I I I
I-L I 1 1 1 1
L-1 I I I I - - - - - - -

1#H±H+ +H+Ph±

Figure 7: For caption, see facing page.

-24 -

Figure 8: Density contours, and corresponding computational grid, for one snapshot

from the interaction of a planar shock wave with a double wedge; cf. holographic

interferogram presented by Itoh et al[12].

25 -

..

T I I I I - - -

T I I I I - - - -

T I I I I - - - -

I f i l l I

f i l l 1 1 1 11

I I L I I T I I I I

T-t - +

I if

i+ It +

................
fill

T I I 1 11
l i t I II

If I

Iffill Ilil

lit I I f- -f+

I I l l f i ll If I I L L

Figure 8: For caption, see facing page.

- 26 -

Figure 9: Two snapshots from the interaction of a planar shock wave with the letters

AMR. Both plots show density contours.

- 27 -

F

Figure 9: For caption, see facing page.

- 28 -

References

[1] M.J.BERGER, Adaptive mesh refinement for hyperbolic partial differential equa-

tions. Ph.D. thesis, Computer Science Dept., Stanford University (1982).

[2] M.J.BERGER AND P.COLLELA, Local adaptive mesh refinement for shock hy-

drodynamics. J. Comput. Phys., 82(1989), pp. 67-84.

[3] M.J.BERGER AND R.J.LEVEQUE, An adaptive cartesian mesh algorithm for

the Euler equations in arbitrary geometries. AIAA Paper 89-1930-CP (1989).

[4] A.E.BRYSON AND R.W.F.GRoss, Diffraction of strong shocks, by cones, cylin-

ders, and spheres. J. Fluid Mech., Vol. 10(1961), pp. 1-16.

[5] D.K.CLARKE, M.D.SALAS AND H.A.HAssAN, Euler calculations for multiele-

ment airfoils using cartesian grids. AIAA Journal, Vol. 24(1987), No. 3, pp.

353-358.

[61 D.DE ZEEUW AND K.G.POWELL, An adaptively refined cartesian mesh solver

for the Euler equations. AIAA Paper 91-1542 (1991).

[7] Y-L.CHIANG, B.VAN LEER AND K.G.POWELL, Simulation of unsteady inviscid

flow on an adaptively refined cartesian grid. AIAA Paper 92-0443 (1992).

[8] J.D.FOLEY, A.VAN DAM, S.K.FEINER AND J.F.HUGHES, Computer graphics,

principles and practice. 2nd edn. Addison Wesley (1990).

[9] A.D.FRENCit, Solutions of the Euler equations on cartesian grids. Ph.D. thesis,

College of Aeronautics, Cranfield Institute of technology (1991).

[10] Graphics Gems. Edited by A.S.Glassner, Academic Press (1990).

[11] G.D.VAN ALBADA, B.VAN LEER AND W.W.ROBERTS, A comparative study of

computational methods in cosmic gas dynamics. Vol. 108(1982), No. 1, pp. 76-84.

[12] K.ITOH, K.TAKAYAMA AND G.BEN-DOR, Numerical simulation of the reflec-

tion of a planar shock wave over a double wedge. Int. J. for Numer. Meth. in

Fluids, Vol. 13(1991), pp 1153-1170.

[13] R.L61INER, Adaptive fl-refinement on 3-D unstructured grids for transient prob-

lems. AIAA Paper 89-0653 (1989).

- 29 -

[14] A.PRIESTLEY, Roe's scheme, Euler equations, cartesian grids, non-cartesian ge-

ometries, rigid walls and all that. Univ. Reading, Dep. Math., Num. Anal. Rep.

14/87, (1987).

[15] J.J.QuIRK, An adaptive grid algorithm for computational shock hydrodynamics.

Ph.D. thesis, College of Aeronautics, Cranfield Institute of technology (1991).

[16] E.F.ToRo, A linearised Riemann solver for the time-dependent Euler equations

of gas dynamics. Proc. Roy. Soc. London, A 434(1991), pp. 683-693.

[17] B.VAN LEER, Towards the ultimate conservative difference scheme, II. Mono-

tonicity and conservation combined in a second-order scheme. J. Comput. Phys.,

14(1974), pp. 361-376.

[18] P.R.WOODWARD, Proc. Nato workshop in Astrophysical Radiation Hydrody-

namics, Munich, Germany. Nov. 1983.

Form ApprovedREPORT DOCUMENTATION PAGE OMB No 70o4088

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 1992 Contractor Report

4. TITLE AND SUBTITLE 5. FUNCING NUMBERS

AN ALTERNATIVE TO UNSTRUCTURED GRIDS FOR COMPUTING GAS
DYNAMIC FLOWS AROUND ARBITRARILY COMPLEX TWO-DIMENSIONAL C NASI-18605
BODIES

6. AUTHOR(S) WU 505-90-52-01

James J. Quirk

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Institute for Computer Applications in Science REPORT NUMBER

and Engineering
Mail Stop 132C, NASA Langley Research Center ICASE Report No. 92-7

Hampton, VA 23665-5225

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING, MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA CR-189612
Hampton, VA 23665-5225 ICASE Report No. 92-7

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card Submitted to Computers
Final Report & Fluids

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 02,64

13. ABSTRACT (Maximum 200 words)

Within the shock-capturing community, the need to simulate flows around geometrically
complex bodies has resulted in an inexorable shift away from schemes which employ
body-fitted grids to schemes which employ unstructured grids. Although unstructured
grids are undeniably effective, in view of the increasing reliance placed on computa-
tional results, such a wholesale shift in mentality should give cause for concern.
The concept of using several computer codes to cross check numerical results becomes
ill-founded if all codes follow the same methodology. In this paper we describe an
alternative approach for dealing with arbitrarily complex, two-dimensional geome-
tries, the so-called cartesian boundary method.

Conceptually, the cartesian boundary method is quite simple. Solid bodies blank out
areas of a background, cartesian mesh, and the resultant cut cells are singled out
for special attention. However, there are several obstacles that must be overcome in
order to achieve a practical scheme. We present a general strategy that overcomes
these obstacles, together with some details of our successful conversion of an adap-
tive mesh algorithm from a body-fitted code to a cartesian boundary code.

14. SUBJECT TERMS 15. NUMBER OF PAGES
complex geometries; cartesian grids; mesh adaption, unsteady 31

flows 16. PRICE CODE
A03

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

NSN 7S40-01-280-5500 Standard Porm 298 (Rev 2-891
2q8 702

